代表性科研论文: (1)Y.L. Meng, P. Liu, X.H. Chen*, Laser remelting combined with micro-arc oxidation coating to improve the biocompatibility of titanium implants, Materials Letters, 2024, 370:136867. (2)L.J. Diao, P. Liu, X.H. Chen*, Facile fabrication of Alkaline treatment and tantalum composite coating on SLA surface to increase antimicrobial and biocompatibility for titanium implant, Materials Letters, 2024, 356: 135591. (3)S.L. Fu, X.H. Chen*,P. Liu, H.L.i Zhou, W. Li, F.C. Ma, Effect of Ti on the microstructure and properties of Cu-Cr alloy, Journal of Materials Research and Technology-JMR&T, 2023, 27:3828-3834. (4)G. Yang, Y.L. Meng, C.H. Qian, X.H. Chen*, P. Liu, H.L. Zhou, B.B. Kang, X.P. Tang, L.J. Diao, F.F. Zhou, Review of microarc oxidation of titanium implant, Journal of Vacuum Science & Technology B, 2023, 41(6): 060801. (5)X.H. Chen*, Y.B. Liu, P. Liu. Electrospun Core-Sheath Nanofibers with a Cellulose Acetate Coating for the Synergistic Release of Zinc Ion and Drugs, Molecular Pharmaceutics. 2023, 21(1): 173-182. (6)X.H. Chen, Y.J. Liu, H. Liu, L. Li, Y.B. Liu, P. Liu, X.H. Yang, Bioactive bone scaffolds manufactured by 3D printing and sacrificial templating of poly(ε-caprolactone) composites as filler for bone tissue engineering, Journal of Materials Science, 2023, 58(12): 5444-5455. (7)S.L. Fu, X.H. Chen*, P. Liu, H.L.i Zhou, F.C. Ma, W. Li, Preparation of layered gradient Cu-Cr-Ti alloy with excellent mechanical properties, thermal stability, and electrical conductivity, Nanotechnology Reviews, 2022, 11(1):3207-3217. (8)X.P. Tang, X.H. Chen*, F.J. Sun, P. Liu, H.L. Zhou, S.L. Fu, The current state of CuCrZr and CuCrNb alloys manufactured by additive manufacturing: A review, Materials & Design, 2022, 224:111419. (9)B.B. Kang, D.M. Lan, L. Liu, R. Dang, C. Yao, P. Liu, F.C. Ma, S.C. Qi, X.H. Chen*, Antibacterial Activity and Bioactivity of Zn-Doped TiO2 Coating for Implants, Coatings, 2022, 12(9):1264. (10)B.B. Kang, D.M. Lan, C. Yao, P. Liu, X.H. Chen*, S.C. Qi, Evaluation of antibacterial property and biocompatibility of Cu doped TiO2 coated implant prepared by micro-arc oxidation, Frontiers in Bioengineering and Biotechnology, 2022, 10:941109. (11)X.P. Tang, X.H. Chen*, F.J. Sun, L.Li, P. Liu, H.L. Zhou, S.L. Fu, A. Li, A study on the mechanical and electrical properties of high-strength CuCrZr alloy fabricated using laser powder bed fusion, Journal of Alloys And Compounds, 2022, 924:166627. (12)X.H. Chen, Q.Q. Lu, Y.H. Gao, W. Tian, H. Wang, H.L. Zhou, S.L. Fu, P. Liu, X.J. Wang, T.Jiang, M.Y. Wan, Bidirectional improvement of strength and ductility of CoCrFeNiTi (Co40Cr16Fe35Ni8Ti1) high-entropy alloys suitable for coronary stents, Journal of Materials Research and Technology-JMR&T, 2022, 18:1934-1946. (13)Z. Miao, X.H. Chen*, H.L. Zhou, P. Liu, S.L. Fu, J.J. Yang, Y.H. Yang, Y.P. Ren, D. Rong, Interfacing MXene Flakes on a Magnetic Fiber Network as a Stretchable, Flexible, Electromagnetic Shielding Fabric, 2022, 12(1):20. (14)X. Guo, X.H. Chen*, P. Liu, H.L. Zhou, S.L. Fu, W. Li, X.K. Liu, F.C. Ma, Z.P. Wu, Preparation and Mechanical Properties of Copper Matrix Composites Reinforced by Carbon Nanotubes and Al2O3, Advanced Engineering materials, 2021, 23(6):2001490. (15)S.L. Fu, P. Liu, X.H. Chen*, H.L. Zhou, F.C. Ma, W. Li, K.Zhang, Effect of aging process on the microstructure and properties of Cu-Cr-Ti alloy, Materials Science and Engineering A, 2021, 802:140598. |